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A B S T R A C T   

Despite decades of archaeological research, roughly 75% of Madagascar’s land area remains archaeologically 
unexplored and the oldest sites on the island are difficult to locate, as they contain the ephemeral remains of 
mobile hunter/forager campsites. The known archaeological record is therefore biased toward later sites, 
especially sites dating to the second millennium AD, following the expansion of Indian Ocean trading networks. 
Systematic archaeological investigations are required to address these biases in the known archaeological record 
and clarify the island’s early human history, but funding limitations, logistical and time constraints in surveying 
large areas and a relatively small number of active field archaeologists present substantial barriers to expansive 
areal survey coverage. Using theoretical models derived from human behavioral ecology (i.e., ideal free distri
bution, optimal foraging theory) in conjunction with freely available remote sensing data, we illustrate how 
archaeological survey of Madagascar’s landscapes can be rapidly expanded, more effectively target early 
archaeological deposits, and address questions about the island’s settlement. This study illustrates the potential 
for theoretically-driven satellite-based remote sensing analysis to improve our understanding of the archaeo
logical record of the world’s fourth largest island.   

1. Introduction 

The human history of Madagascar, the world’s fourth largest island, 
is complex and involves the movement and dynamic interaction of 
people, plants, animals, and ideas from around the Indian Ocean (Rad
imilahy and Crossland, 2015; Dewar and Richard, 2012; Fuller et al., 
2011). To-date, archaeological, genetic, and linguistic research have 
revealed the earliest known evidence of Madagascar’s far-reaching 
connections; the island lies at the westernmost reach of the Austrone
sian expansion (Crowther et al., 2016) and multiple lines of evidence 
testify to the migration of Bantu peoples from the African mainland to 
Madagascar (Parker Pearson et al., 2010; Pierron et al., 2017; Sussman 
et al., 1994). Important questions, however, regarding Madagascar’s 

human past remain poorly resolved. The timing and nature of Mada
gascar’s human colonization continue to generate intense debate in 
archaeology (Douglass et al., 2019a), and our understanding of subse
quent social, economic, political, and ecological processes is limited, 
both temporally and spatially (Douglass and Zinke, 2015; Dewar and 
Wright, 1993). 

Research into Madagascar’s early history requires new approaches to 
overcome existing barriers to our understanding. These include the 
poorly understood remains of ancient foraging and fishing communities, 
and the relationship between archaeological settlement patterns, envi
ronmental conditions, and climate change (e.g., Kull, 2000; Parker 
Pearson et al., 2010; Wright, 2007; Wright and Rakotoarisoa, 2003). 
Landscape-level approaches are critically needed to address these 
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research lacunae. To date, landscape-level approaches are mostly absent 
from archaeological studies on Madagascar (for exceptions see Dewar 
and Wright, 1993; Mille, 1970; V�erin, 1986; Wright, 2007; Parker 
Pearson et al., 2010). This is partly because ground-based landscape 
investigations require large investments of time and resources in the 
field to generate sufficient information; funding, logistics and a small 
number of active field archaeologists have proven to be barriers to 
extensive areal coverage. Innovative approaches are critically needed to 
expand archaeological survey coverage and document cultural heritage, 
particularly considering that Madagascar is experiencing increasing 
impacts from climate change. Climate-driven threats on the island 
extend to both its people and their histories (IDMC, 2019; Lemahieu 
et al., 2018; USAID, 2016). 

Here we present the first satellite-based remote sensing archaeo
logical survey of the Velondriake Marine Protected Area of southwest 
coastal Madagascar. Using freely-available satellite imagery, image 
processing algorithms, predictive modeling derived from human 
behavioral ecology (HBE) theory and ground-truthing survey, our 
approach successfully identifies cultural deposits throughout a ~1400 
km2 area. The Velondriake (Fig. 1) case study demonstrates how the 
development of a predictive model to analyze satellite imagery can 

rapidly expand the known record of archaeological settlements on 
Madagascar, filling both temporal and spatial gaps at the landscape 
level. Systematically documenting ephemeral components of the 
archaeological record at the landscape scale is essential for answering 
longstanding questions in archaeology surrounding human- 
environment interactions, social complexity, resilience, and mobility 
(e.g., Kintigh et al., 2014). On Madagascar, specifically, little attention 
has been paid to internal migration within the island, but rather focused 
on arrival events and migration between Madagascar and surrounding 
regions (Allibert, 2008; Anderson et al., 2018; Beaujard, 2011; Dewar 
and Richard, 2012; Douglass et al., 2019b; Hansford et al., 2018; 
Mitchell, 2019; V�erin et al., 1969). By conducting landscape scale sur
veys of the island, we will be able to address how communities moved 
throughout the landscape, and how such mobility was related to envi
ronmental, political, and social developments. 

Our case study also highlights the importance of integrating theo
retical models with remote sensing methods in African archaeology 
more broadly (Davis and Douglass, in press). Drawing on lessons from 
research conducted using HBE and related theoretical models from other 
regions (e.g., Baja California (Codding and Jones, 2013), the Channel 
Islands (Winterhalder et al., 2010), Australia (O’Connell and Alien, 

Fig. 1. Map of study area. Inset map shows location 
of study area on Madagascar. Full coverage pedes
trian transect survey of a portion of the research area 
by the Morombe Archaeological Project (MAP, 
2011–2017) generated preliminary data used to build 
a theoretically-driven remote sensing procedure. 
Previously unexplored areas were then surveyed 
using our remote sensing imagery and the results of 
our predictive model of site location were then 
assessed using ground-truthing survey (Satellite 
image: Sentinel 2; Inset map source credits: Esri, 
GEBCO, NOAA, National Geographic, Garmin, HERE, 
Geonames.org).   
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2012), Polynesia (DiNapoli and Morrison, 2017)), we demonstrate that 
it is possible to use satellite-based remote sensing to test the nature of 
past human-environment interaction and drivers of settlement mobility. 
We further demonstrate that the integration of theoretical models and 
satellite-based remote sensing methods holds great potential for rapidly 
locating previously unrecorded archaeological deposits at vast 
geographical scales, even when these deposits are ephemeral in nature. 

2. Previous landscape-level investigations on Madagascar 

Most landscape-level archaeological investigations on Madagascar 
focus on periods from 900 B.P. to the present and highlight important 
demographic and political processes, including the overall increase in 
size and number of settlements and the rise of centers of political power 
(Parker Pearson et al., 2010; Wright, 2007). Although the reliability of 
chronometric determinations for early periods has been questioned (e. 
g., Anderson et al., 2018; Mitchell, 2019), evidence of far earlier occu
pations exists on Madagascar, extending the island’s human record as far 
back as ~10,000 B.P. during the Early Holocene (Hansford et al., 2018). 
Recent systematic assessment of Madagascar’s radiocarbon chronology 
supports the possibility of an Early Holocene human presence on 
Madagascar, despite a lack of contextual information on the nature of 
such an early presence (Douglass et al., 2019a). Given the evidence for 
Early Holocene human activity on Madagascar and the taphonomic and 
sampling challenges inherent in studying Madagascar’s ephemeral early 
forager sites (Douglass and Zinke, 2015), new approaches are urgently 
needed to record and assess over 90% of the span of time for which 
human presence has been recorded on the island. Landscape-level ap
proaches, in particular, will be critical to understanding the evolution of 
settlement patterns and human-environment dynamics during early 
periods of human occupation. A diversity of landscape-level approaches 
has proven useful for understanding the interplay between human be
haviors and environmental contexts in other parts of the world (e.g., 
Codding and Jones, 2013; DiNapoli and Morrison, 2017; Jazwa et al., 
2017; Winterhalder et al., 2010). 

Despite the critical temporal gaps in landscape-level archaeological 
investigations to-date, understandings of landscapes from the 10th 
century onwards (Crossland, 2001; Pearson, 1992; Sussman et al., 1994; 
Tucker, 2004; Wallace et al., 2016) have illuminated connections be
tween humans and their environmental surroundings. Theory from 
human behavioral ecology (HBE) and historical ecology have been in
tegrated in ethnographic work (e.g., Tucker, 2004; Tucker et al., 2010), 
but such approaches are still scarce in archaeological contexts (e.g., 
Douglass et al., 2019b). For example, Tucker (2004) demonstrates how 
Mikea foragers’ food-sharing practices are dictated by economic factors, 
reciprocity, kin selection, and tolerated theft. In another study by Tucker 
et al. (2010), HBE is used to understand risk mitigation via the practice 
of mixed subsistence strategies. 

Recent advances in remote sensing methods and datasets (e.g., Davis 
et al., 2019; LaRocque et al., 2019; Thabeng et al., 2019) offer important 
opportunities for applications of remote sensing approaches that 
promise to advance and expand our understanding of the island’s 
archaeological record, particularly with regard to early and ephemeral 
sites. On Madagascar, previous studies using aerial imagery successfully 
revealed the locations of tens-of-thousands of fortification sites dating as 
far back as ~600 B.P. (Mille, 1970). Most recently, Clark et al. (1998) 
illustrated the potential of multispectral and radar instruments for 
recording landscape patterns that could reveal the locations of archae
ological deposits. Since Clark et al.’s study, spatial and spectral resolu
tions in satellite imagery have increased, permitting for greater details to 
be captured by sensors. In turn, researchers’ ability to identify subtle 
landscape deposits (like archaeological sites) have improved, as higher 
resolutions are often needed to detect such features (see Beck et al., 
2007). Furthermore, advances in image processing techniques have led 
to a revolution in remote sensing analysis (Davis, 2019a; Lambers et al., 
2019; Verschoof-van der Vaart and Lambers, 2019). Our study 

demonstrates the potential for remote sensing to clarify diachronic 
landscape changes and their human dimensions on Madagascar, as has 
been achieved in other world regions (e.g. Carleton and Collard, 2019; 
Davis, 2019b; Stephens et al., 2019). 

3. Methods 

Here, we outline a preliminary study that combines HBE modeling 
with remote sensing survey to predict the distribution of archaeological 
sites on southwest Malagasy landscapes. In this discussion, “site” refers 
to any area containing two or more artifacts during ground surveys. Sites 
thus encompass artifact clusters, settlements, and any other cultural 
materials present in an area. The approach is based on ideal free dis
tribution (IFD) models (see Fretwell and Lucas, 1969). These models 
assume that individuals settle areas with the best overall suitability 
(with regards to available resources) and that, as population density and 
resource consumption increase, settlements shift to areas with lower 
resource suitability. Because the current study lacks absolute temporal 
control, the assumption is made that the earliest sites will be located in 
“high” suitability areas. Confirmation of this hypothesis requires further 
testing. Here we focus on the density and variability of cultural materials 
present in different suitability locations. Furthermore, we assess 
whether ethnographically and historically important resources (e.g. 
coral reefs, vegetatively productive land, distance to the coast, etc.) are 
good predictive variables for locating archaeological sites in southwest 
coastal Madagascar. 

3.1. Ideal free distribution modeling 

Within HBE, there are a series of different optimality models 
(optimal foraging theory, OFT) which try to predict decision making of 
individuals based on costs and benefits of different actions (e.g., Blurton 
Jones, 1986; Charnov 1976; Fretwell and Lucas, 1969; MacArthur and 
Pianka, 1966; O’Connell and Hawkes, 1981). Such modeling approaches 
have proven useful in exploring the rationale behind observed phe
nomena in anthropology, including archaeological evidence of behavior 
and choice (e.g., Bird et al., 2016; Codding and Bird, 2015; Jazwa et al., 
2017; Robinson et al., 2019; Tucker et al., 2010). Despite criticisms of 
OFT (see Zeder, 2012), the explicit framework offered by such ap
proaches provides a heuristic device for exploring factors that may in
fluence settlement choice in human populations (e.g., Stiner and Kuhn, 
2016). 

IFD models, a type of OFT model developed by Fretwell and Lucas 
(1969), have been applied in various settings around the world for 
identifying temporal and ecological trends in population settlement 
distribution (see Winterhalder et al., 2010; Codding and Jones, 2013; 
Yaworsky and Codding, 2018; Hanna and Giovas, 2019). IFD stems from 
the work of Fretwell and Lucas (1969) and operates on the principle of 
negative density dependence (Winterhalder et al., 2010; Yaworsky and 
Codding, 2018). As population pressures increase, the overall resource 
quality of that area will degrade, thereby lowering the suitability of that 
habitat and its likelihood of being settled. 

The IFD model, however, is simplistic, and there are biological 
principles that often violate its assumptions. For example, the Allee ef
fect accounts for temporary improvements in habitat suitability caused 
by immigrating populations, community aggregation, and habitat 
modification (Fretwell and Lucas, 1969, 19). One example of Allee-effect 
IFD comes from Neolithic farmers who modified their landscapes to 
increase agricultural production by clearing forestland (McClure et al., 
2009). IFD-Allee models predict that individuals settling lower ranking 
habitats attract others to follow, thereby abandoning higher suitability 
areas (Winterhalder et al., 2010, 473). As such, the highest suitability 
areas will have a slightly lower population than medium suitability 
locations. 

There is also a variant of IFD for when access is restricted, and people 
establish certain controls over resources – ideal despotic distribution 
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(IDD). IDD accounts for differences in competitive ability and resource 
control (Jazwa et al., 2017). In an IDD model, the opposite pattern of 
population distribution is expected from IFD, wherein the highest den
sity of individuals will inhabit lower suitability habitats. 

Since we currently have limited information about the resource 
management and land-use practices of these communities or changes in 
their demography at a fine resolution, we cannot definitively assess 
whether land-use practices led to degradation of environments as the 
IDD model posits. IFD models, therefore, are used as a theoretically- 
framed starting point, rather than IDD, so that we may begin to 
address this information in a theoretically sufficient manner (sensu 
Lewontin, 1974). 

3.2. Remote sensing and predictive modeling 

For this study we use freely downloadable satellite imagery from the 
European Space Agency Sentinel-2 satellite (https://www.copernicus.eu 
/en/access-data). This satellite has proven useful for a wide range of 
disciplines, including archaeology (Agapiou et al., 2014), but its 
medium-to-low resolution (10 m visual and near infrared (NIR), 20 m 
NIR and short-wave infrared (SWIR)) constrains its applicability, 
including for the documentation and preservation of cultural heritage. 
Because archaeological deposits on Madagascar’s southern coasts are 
often subtle artifact scatters, Sentinel-2 data do not have the spatial 
resolution necessary to directly identify these features. However, its 
resolution is conducive to developing a predictive model of site locations 
using the theoretical assumptions of IFD. While similar predictive 
measures have been used by other scholars (e.g., Agapiou et al., 2014; 
Bennett et al., 2012; Kirk et al., 2016; Lasaponara and Masini, 2007), 
most rely on interpreting vegetative indices for soil and vegetative 
anomalies, and do not always utilize explicit theoretical models from 
anthropology. 

If our method is successful – and the data conform to an IFD – we 
expect: 1) that high value areas will contain the greatest proportion, 
density, and variety of artifacts; 2) these amounts will decrease steadily 
in Medium, Low, and Null probability areas; and 3) that the settlements 
located in high probability areas will be older than those in other lo
cations. The third hypothesis is beyond the scope of the current paper 
and will be the focus of future research once sufficient temporal data 
become available. 

3.3. Processing steps of predictive modeling analysis 

1. Based on a review of available archaeological and ethnographic 
data, we developed a list of important resources and landscape features 
for communities of the southwest coast (e.g., Douglass, 2016; Douglass 
et al., 2018; Gommery et al., 2011; Pearson, 1992, 1997; Tucker, 2004; 
Tucker et al., 2010). These data include locations of coastal archaeo
logical sites identified by surface survey and excavation (Douglass, 
2016; MAP 2011–2017). Important variables that influence human 
settlement include: distance from the sea shore; distance from offshore 
coral reefs; distance from paleodunes; and the vegetative productivity of 
specific locations. 

2. Training samples were created using the 2-D scatterplot function 
in ENVI to develop a total of 6 landscape classes (Fig. 2): water, coral, 
bare soil, shrubs, paleodunes, and dense vegetation (i.e., mangrove 
forests). This method was used for training sample collection to ensure a 
minimal amount of spectral overlap between each land class. An initial 
assessment of the spectral properties of the study area led to the decision 
to use the NIR, Red, and Green bands (RGB 843) in order to capture the 
most information pertaining to vegetative health and moisture proper
ties for landscape classification. 

3. Sentinel-2 images were classified using a support vector machine 
(SVM) classifier in ENVI 4.7 (Exelis Visual Information Solutions, 2009). 
SVM is a non-parametric classification technique that has gained 
popularity due to its ability to produce highly accurate classifications 

using limited training datasets (Mountrakis et al., 2011). The method 
works by identifying optimal separations between classes and can 
handle multiple classes simultaneously (Pal and Mather, 2005). 

4. Coral reefs in some instances were not reliably classified using 
pixel-based methods (i.e., SVM). We therefore used an object-based 
image analysis (OBIA) approach with threshold classification (see 
Davis, 2019a; Sevara et al., 2016). Unlike pixel-based methods, 
object-based methods take shape, texture, and morphology into account 
to classify image components (Blaschke, 2010; Davis, 2019a; Hay and 
Castilla, 2008). This same procedure was used to classify the locations of 
offshore islands, which serve to extend fishing grounds and offer 
safe-havens for coastal fishers during periods of political instability 
(Cripps, 2009; Douglass, 2016:72). OBIA was used to generate shapefiles 
of offshore island and coral locations using eCognition 9.0.1 (Trimble, 
2014). Multiresolution segmentation was conducted using a scale 
parameter of 60, shape parameter of 0.7, and compactness factor of 0.6. 
These parameters were chosen following trial-and-error, wherein the 
chosen parameters resulted in the greatest accuracy. Following this step, 
pixel brightness thresholds were used to extract all image objects located 
in areas covered by or immediately adjacent to water (as identified by 
SVM) that matched threshold values for coral or offshore island features. 
Corals within this region contained brightness values between 600 and 
1150 and offshore islands contained values of 1200 or greater. The OBIA 
results were then assessed manually to eliminate the few errors present 
throughout the study region. 

5. Data generated from the SVM and OBIA classifications were im
ported into ArcGIS 10.6.1 (ESRI, 2018) and underwent several pro
cessing steps (Fig. 3). The water and paleodune classes were extracted 
into their own raster layers in ArcMap and subjected to Euclidean dis
tance tests. Euclidean distance produces a raster of distance measure
ments between the input (i.e., water and paleodunes) and the 
surrounding pixels in an image. Euclidian distance is appropriate, as 
opposed to a cost-distance analysis, because of the gradual landscape 
elevation changes in this region. While hills and other topographic 
features are present, there are no extreme elevation changes within the 
study region. 

6. The final variable incorporated is vegetative productivity. To 

Fig. 2. A 2-D scatterplot function in ENVI (Exelis Visual Information Solutions, 
2009). Each land-class can be identified by spectral values and overlaps can be 
minimized. Red: paleodunes; Green: coral; Cyan: shrubs; Blue: water; Magenta: 
dense vegetation. All white space is unclassified spectral values within the 
satellite image. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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measure vegetative productivity a SAVI (soil adjusted vegetative index) 
was used, which takes into consideration soil properties, including 
moisture content (Huete, 1988). Given the extreme variance in soil 
reflectance characteristics on Madagascar (see Clark et al., 1998), SAVI 
was chosen as the most appropriate index, as opposed to NDVI 
(Normalized Difference Vegetation Index) and others (e.g., simple ratio, 
leaf area index, etc.; see Jensen, 2007:384–385) that decrease in accu
racy over large geographic areas with high vegetative diversity (Jensen, 
2007). SAVI is calculated using the formula: 

SAVI¼
NIR � red

NIRþ red þ L
� ð1þ LÞ: (1)  

where the NIR and red bands are used, and L represents the soil 
adjustment factor. The best soil adjustment has been demonstrated 
around L ¼ 0.5 (Huete, 1988; also see Jensen, 2007) and was chosen for 
this study. Once calculated, SAVI indices that contained values associ
ated with the presence of shrubs and other vegetation were extracted 
and we conducted another Euclidean distance function to produce a 
distance raster of vegetative areas. 

7. With all these variables together, we used the following formula to 
calculate overall probability of early forager settlements in ArcGIS using 
the raster calculator: 

PArc¼

�
1
dw
þ

1
dc
þ

1
dp
þ

1
dv
þ

1
di

�

� 100 (2)  

Where PArc is the probability of archaeological deposits, dw is distance 
from water, dc is the distance from coral beds, ds is the distance from 
paleodunes, dv is the distance from land with SAVI index values of 0.35 
or better (this value represents the minimum value for shrubland), and 
di represents the distance to offshore islands. Each distance raster was 
inversed to produce the highest values for the lowest distance from each 
resource type. Once the index was calculated, we used inverse-distance 
weighting (IDW) interpolation to fill in gaps in the probability raster up 
to 100 m using the elevation void fill function in ArcMap 10.6.1 (ESRI, 
2018). 

8. Following the development of our predictive model, we assessed 
the model’s ability to detect prerecorded archaeological sites (MAP 
2011–2017) and established a sampling strategy for field tests to assess 
the model’s ability to predict the location of previously unrecorded cul
tural deposits. To accomplish this, we first compared the locations of 
prerecorded sites to the probability values generated by the algorithm. 
Then, to assess the algorithm’s ability to detect previously unrecorded 
materials, we created a grid of 50 m � 50 m squares throughout the 
entire study area (~1400 km2). Each grid was assigned a unique iden
tification number by ArcMap. In Excel, we randomly selected 600 ID 
numbers using the “randbetween” function. These 600 areas were then 
checked to ensure they were accessible on foot. Ultimately, a total of 145 
areas were selected on the basis of proximity to other points, accessi
bility, and feasibility of visitation during the 2019 field season. Among 
the randomly selected grids, 73 contained “high” probability zones, 31 
contained “medium probability”, and 27 had “low” probability. Sur
veyors did not have any prior knowledge of the probability of locating 
sites to ensure an unbiased recording of materials. Table 1 shows the 
quantitative breakdown of these qualitative categories. The remaining 

Fig. 3. Processing steps of predictive modeling analysis.  

Table 1 
Quantified thresholds of probability index and their qualitative equivalent 
classifications. Class thresholds were calculated using a Natural Breaks 
(Jenks, 1967) method.  

Quantitative Values Qualitative Ranking Equivalent 
Null/Blank Null 
0–5.5 Low 
5.5–11.4 Medium 
>¼11.5 High  
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14 areas had null probability values and were chosen to assess false 
negative results. 

Together, these methods produced information needed to calculate 
overall habitat suitability, and by extension, probability of settlement 
for coastal communities. Based upon the expectations of IFD, the highest 
suitability (and hence probability) locations will hold the greatest 
number of archaeological deposits, with lower suitability areas con
taining fewer archaeological assemblages. 

4. Results 

SVM resulted in 93.6% accuracy (KIA ¼ 0.931) (see Tables 2 and 3) 
and OBIA attained an overall accuracy of 97.7% (KIA ¼ 0.914) for the 
classification of the chosen environmental land-types (Tables 4 and 5). 

4.1. Prediction of pre-recorded site locations 

Within the entire dataset of prerecorded archaeological deposits (n 
¼ 756), we find that only five previously surveyed deposits do not fall 
within areas identified by the algorithm (Fig. 4). All of these deposits are 
located on paleodune features, however, suggesting a strong relation
ship between this environmental context and human settlement. The 
model thus reliably predicts the location of pre-recorded deposits. 

4.2. Prediction of previously unrecorded site locations 

To assess the ability of the model to locate previously unrecorded 
cultural materials, ground surveys were carried out on 71 of the 145 
selected sites during the summer of 2019 (Supplemental File 1). A va
riety of different materials were recovered during surveys, ranging from 
ceramics and beads to elephant bird eggshell and marine shells 
(Table 6). When assessing these artifacts, we distinguished between 
“definitive” and “possible” human presence, with “definitive” referring 
to materials that were clearly made or altered by people (e.g., ceramics, 
modified shell, etc.) and “possible” referring to materials that are in 
direct association with other cultural artifacts or contexts, such as 
burning activity. The results largely fit the hypothesis that high suit
ability areas will contain the greatest proportion, density, and variety of 
artifacts and that these amounts will decrease steadily in Medium, Low, 
and Null probability areas. However, there is a slight increase in the 
density of artifacts within medium probability zones, suggesting a 
possible fit with an IFD with Allee effect model (see Fretwell and Lucas, 
1969, Fig. 5). 

Grid probability values are an average of raster pixel data. As such, 
even “high” probability grids may contain values that are lower in 
likelihood. Therefore, we investigated the precise locations where ma
terials are present to see if individual materials are also accurately 
predicted by the model. When examining the locations of individual 
artifacts, we once again find a strong clustering in high probability areas 
(Table 7; Fig. 6). 

5. Discussion 

The distribution of materials recovered during pedestrian survey 

suggests that the immediate coastline is the most densely inhabited area 
of the study region (Fig. 1), with material culture abundance (i.e., ce
ramics, beads, modified shells, etc.) steadily decreasing as one moves 
inland (Fig. 7). As indicated in Table 6, the diversity of artifacts also 
decreases in lower suitability areas, suggesting possible limitations for 
resource acquisition. For example, in high suitability areas, metal and 
coral artifacts, in addition to beads and other artifact types, are present. 
However, in medium, low, and null suitability areas metal and coral 
were not recovered, and the amount of beads and other artifacts de
creases drastically. This raises the possibility that resource access may 
have been controlled, as the variety of materials is not even across the 
study region. 

This preliminary landscape analysis illuminates several possibilities 
to understand settlement patterns. Archaeological deposits identified 
here all fall within the expectations of optimal foraging and IFD 
modeling frameworks. Populations settling the coast of southwest 
Madagascar appear to have prioritized shoreline ecosystems with ready 
access to resources that are still valued today. Cultural deposits found 
further inland are often within flood-zones during the wet season. This 
pattern coupled with the dearth of cultural materials exceeding 5 km 
from the modern coastline suggest that settlements are greatly influ
enced by marine resources. 

Furthermore, Allee’s principle (Allee and Bowen, 1932) argues that 
community formation can produce increased fitness for a population’s 
survival. Social ties can act as Allee effects because they can foster 
cooperation between individuals, thereby allowing for resource 

Table 2 
Confusion Matrix for SVM classification. Numbers are total ground-testing points.  

Class Mangroves Dunes Coral Water Forest Shrubs Sand/Bare Ground Total (# of points) 

Mangroves 98,876 0 0 0 2297 0 0 101,173 
Dunes 0 45,570 0 0 0 0 343 45,913 
Coral 0 0 20,478 0 0 0 0 20,478 
Water 0 0 0 126,383 0 11 0 126,394 
Forest 2614 0 0 0 173,492 0 138 176,244 
Shrubs 1 0 0 0 6051 31,274 117 37,443 
Sand/Bare Ground 0 0 0 0 3 839 18,103 18,945 
Total 101,491 45,570 20,478 126,383 181,843 32,124 18,701 526,590  

Table 3 
Producer and User Accuracy for SVM classification.  

Class Producer Accuracy (%) User Accuracy (%) 

Mangroves 97.42% 97.73% 
Dunes 100.00% 99.23% 
Coral 100.00% 99.96% 
Water 99.99% 100.00% 
Forest 95.41% 98.43% 
Shrubs 97.32% 83.52% 
Sand/Bare Ground 96.80% 95.56%  

Table 4 
Confusion Matrix for OBIA classification. Numbers reflect amount of training 
objects.  

Class Islands Coral Total # 

Islands 795 8 803 
Coral 14 141 155 
Total (%) 809 149 958  

Table 5 
User’s and Producer’s Accuracy for OBIA classification.  

Class Producer’s Accuracy (%) User’s Accuracy (%) 

Islands 98.3 99.0 
Coral 94.6 91.0  
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Fig. 4. Results of Archaeological Probability Index and select pre-recorded sites. A. Sites represent those recorded by recent survey work between 2017 and 2018 and 
earlier surveys recorded by the MAP between 2011 and 2018 (see Douglass, 2016). B. Shows closeup of a cluster of sites found in map A. C. Shows another cluster of 
sites in map A. Both clusters (B and C) fall primarily on high and medium values. 

Table 6 
Sum of survey results by grid probability value. Note, the amount of material increases between each level, with the greatest increase for high probability locations. 
Lower probability areas still produce artifacts, which is expected, but at lower densities and amounts, as predicted by an ideal free distribution model. The variety of 
artifacts also decreases with probability.  

Grid 
Probability 

Types of 
artifacts 

Charcoal Eggshell Marine 
Shell 

Faunal Ceramics Beads Lithics Botanicals Glass Metal Burnt 
Stones 

Coral Total 
Materials 
Collected 

High 9 6 186 204 35 193 26 0 0 0 1 7 1 659 
Medium 8 1 88 102 6 129 3 0 0 1 0 1 0 331 
Low 5 1 54 41 5 39 0 0 0 0 0 0 0 140 
Null 3 0 22 13 1 0 0 0 0 0 0 0 0 36  
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acquisition to be shared and limiting the burden on smaller groups or 
individuals. An Allee effect distribution would suggest that coastal 
foraging populations: a) actively changed and improved the suitability 
of the areas they inhabited (which has been documented elsewhere: see 
Freeman and Baggio, 2017; McClure et al., 2009; Quintus and Cochrane, 
2018; Quiros et al., 2017); and/or b) that social networks were strong 
unifying factors that led to significant population movements as envi
ronmental resources shifted. 

Additional support for an idealized distribution comes from 
Kolmogorov-Smirnov (K–S) distribution tests which reveal distinct dif
ferences between the archaeological data and other continuous distri
bution functions (Table 8; Fig. 8; Supplemental File 2). The data are not 
normally distributed, nor do they conform to Gamma or Poisson pat
terns. Gamma distributions are often used to evaluate skewed datasets 
with positive values (Hogg et al., 2005) and Poisson distributions 
measure spacing between randomly occurring events (Haight, 1967). 
The results indicate that archaeological distributions are statistically 
different from these patterns but are closest to a uniform dispersal. 

If comparing a uniform dispersal to an IFD, we can expect that in 
high suitability areas IFD will have greater densities than uniform dis
tributions, but moderate distributions should be about equal (i.e., den
sities are distributed rather evenly across moderate suitability spaces). 
When looking at the comparison between the archaeological and 
simulated uniform distribution data, the archaeological data mostly 
matches this expectation. The conformity of the archaeological data to 
an IFD remains a hypothesis, however, as temporal information is 
needed. Nonetheless, the results of the K–S tests provide evidence that 

justifies further research into this question. 
Consistent with findings by Douglass (2016), this study also suggests 

a relationship in the Velondriake area between possible elephant bird 
(Aepyornithidae) nesting grounds and human settlement locations. 
Elsewhere on Madagascar associations between cultural contexts and 
elephant bird eggshell have also been noted (e.g. Parker Pearson et al., 
2010; Radimilahy, 2011; Battistini and V�erin, 1972). Aepyornis eggshell 
remains are often located in ancient paleodunes which are present along 
the coasts of southern Madagascar and are easily visible from 
medium-to-course resolution satellite imagery (Clark et al., 1998). The 
identification and survey of paleodune features is likely to yield exciting 
new information regarding the interaction between humans and these 
large avifauna, and the investigation of paleodunes should be prioritized 
to better understand the processes that contributed to the birds’ decline. 

5.1. Future work 

While the results are highly positive, there is room to improve the 
predictive power of the algorithm developed here. Future work will look 
to improve the method by incorporating additional ethnographic and 
environmental variables that were potentially overlooked, such as 
groundwater levels. Looking at the results, the greatest density clusters 
of materials seem to occur in areas closest to offshore islands and on 
coastlines that contain coves sheltered by rocky coastal barriers. Con
ducting spatial-statistical tests can reveal the most significant variables 
for predicting archaeological material and will be the focus of future 
work. 

Furthermore, the results of the surveys carried out under the direc
tion of this remote sensing model will be used to address larger questions 
concerning human-environmental interaction through time. In partic
ular, future work will integrate settlement pattern data with high reso
lution paleoecological and paleoclimate records, to enable modeling of 
human response to climate and environmental change. This will enable 
researchers to understand settlement and migratory patterns and their 
connection to environmental conditions. As fieldwork continues, tem
poral data will become available for many of these newly identified 
deposits. To date, we know that several previously excavated sites 
dating to ~2500 B.P (see Douglass, 2016). were re-identified as “high” 
likelihood by our algorithm. This suggests that other contemporaneous – 

Fig. 5. Density distribution of artifacts recovered from different probability locations. Black lines represent the IFD-Allee curves, with the top line representing 
population thresholds for the best habitats, and the second line showing thresholds for less suitable habitats. Temporal data is still needed to confirm conformity to an 
ideal distribution. 

Table 7 
Descriptive statistics of probability values for specific points within survey grids 
where materials were recovered. The average and most frequently occurring 
values are high probability, thus coinciding with the grid-level data. Note, these 
calculations ignore null values.  

Statistic Quantitative Value Qualitative Value 

Minimum 1.69 Low 
Maximum 22.96 High 
Mode 16.33 High 
Mean 12.71 High  
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and possibly earlier sites – will emerge as our ground surveys continue. 
Based on preliminary analysis of ceramic decorative attributes (see 

Douglass, 2016) recovered during ground surveys, many of the sites 
identified using this predictive model date to at least 800–1000 B.P. 
High probability sites had the greatest range in ceramic styles, signifying 
longer occupational durations, while low probability sites had fewer 
ceramics and less variation. There were also many sites with undeco
rated ceramics, and an absence of ceramics, which tend to signify earlier 
occupations than those with decorated ceramics (Douglass, 2016). 
Furthermore, these surveys contain only surface deposits, meaning that 
these dates likely represent the latest materials on sites that were 
occupied during earlier periods. Seeing as present sea levels were similar 
to those 3000–6000 B.P., with a 2–3 m rise between 1000 and 3000 B.P. 
(Virah-Sawmy et al., 2009), identified sites that are near the modern 
coastline and lack ceramics may yield information about human set
tlement as early as 6000–7000 B.P. As radiocarbon dates become 
available, this hypothesis will be assessed. 

6. Conclusions 

The method developed here is already revealing important infor
mation pertaining to settlement patterns in Southwest Madagascar. We 
now have evidence that coastal foragers in the past placed importance 
on similar environmental resources as contemporary communities. We 
also have additional evidence of human-megafauna interactions, which 
will prove useful for understanding extinction patterns and the role of 
terrestrial resources in coastal community lifeways. Furthermore, we 
have a systematic dataset that can be used to test hypotheses regarding 

internal mobility and migration. 
Our case study illustrates the utility of HBE theory for framing pre

dictive remote sensing analysis. The protocol described here evaluated 
the probability of cultural activity at an average rate of ~50 km2 per 
hour of processing time.1 With greater processing power, this rate can be 
increased further, saving time, money, and resources by targeting high 
probability areas for ground survey. Additionally, all the analyses con
ducted here use freely available satellite imagery and can be analyzed 
using open-source software, including QGIS (QGIS Development Team, 
2018) and R (R Core Team, 2018). With greater access to geo-spatial and 
statistical training, this work can be greatly expanded by other re
searchers, particularly in regions that are understudied in archaeology. 

The acquisition of remote sensing datasets at higher spatial and 
spectral resolutions will allow researchers to directly identify archaeo
logical deposits on Madagascar, rather than assign general probabilities 
for where these features are located (e.g. Calleja et al., 2018; Davis et al., 
2019; De Laet et al., 2007; Guyot et al., 2018 Lasaponara and Masini, 
2007; LaRocque et al., 2019; Traviglia and Cottica, 2011; Trier et al., 

Fig. 6. Shows the points of some specific materials collected during survey. Note how the greatest clustering takes place on the highest values, and as values decrease 
the number of materials follows suit. 

1 This ratio was calculated on the basis of the average time allocation for each 
section of the study area. The region was divided into 3 parts totaling ~1400 
km2, with each section requiring approximately 6–8 h of computer processing 
time for the SVM classification and another 2 h of manual processing time to 
create the final probability map. Total, this procedure can be achieved with 
high levels of time- and cost-efficiency which can be cut down even further 
depending upon computing power and processing speeds. Computer used for 
analysis had an Intel® Core™ i7-4790 CPU @ 3.60 GHz Processor with 32.0 GB 
of RAM. 
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2009; Thabeng et al., 2019). Because remote sensing surveys can often 
only identify locations of the largest-scale features – and thereby bias 
our understanding towards specific activities, the use of theoretical 
models can help to direct ground survey efforts in conjunction with 
remote sensing data to reduce some of these biases by identifying a 

greater variety of cultural activities. The method developed here makes 
it possible to identify early deposits on Madagascar which are currently 
at risk of disappearing due to erosion and sea-level change. We must act 
quickly to uncover the fragile remains of the earliest settlers of 
Madagascar, as these components represent an actively disappearing 
cultural landscape. Threats to cultural heritage from environmental 
factors such as erosion and sea level rise, are exacerbated by urban 
development and other anthropogenic factors (Douglass, 2016; Parker 
Pearson et al., 2010; Wright, 2007; Wright and Rakotoarisoa, 2003). 

Uncovering and preserving these data requires an expansion of 
remote sensing surveys – via satellites, drones, and other instruments – 
to rapidly and systematically survey vast geographic space. There have 
been calls in recent years to expand systematic survey of Madagascar’s 
landscape (Parker Pearson et al., 2010; Douglass and Zinke, 2015), 
including the often-neglected areas inland from the immediate coastline 
(Douglass et al., 2018). While our study looks at coastal areas in the 

Fig. 7. Shows the locations of artifacts (and clusters of artifacts) recovered from grids visited throughout the study area during July and August of 2019. Definitive 
human presence is signified by beads, ceramics, and burnt/worked marine shells. Possible human presence is signified by the presence of shells and faunal remains 
that are burned, but not worked or modified, and an absence of ceramics or beads. 

Table 8 
Results of K–S tests between archaeological probability distribution and 
randomly generated probability distributions. All tests were run in R (R Core 
Team, 2018) using the stats package (see Supplemental File 2).  

Compared Distribution D-value P-value 

Normal 0.83673 <0.00001 
Gamma 0.80823 <0.00001 
Poisson 0.81229 <0.00001 
Uniform 0.13469 0.02438  

D.S. Davis et al.                                                                                                                                                                                                                                 



Journal of Archaeological Science 115 (2020) 105097

11

Southwest, the method can easily be expanded to inland regions of 
Madagascar. 
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